
Oberon Pi System User Guide (PDF version)

This document is a user guide for the Oberon system.

To continue reading this document you need to be able to do the

following things in Oberon:

	 1. Scroll the document up and down in its window.

	 2. Exit Oberon, which returns you to the Raspberry Pi

	 operating system.

To scroll this document up or down, first move the mouse pointer into

the document's scroll bar. In Oberon, the scroll bar is the narrow vertical

column that appears to the left of the document text.

While the mouse pointer is inside the scroll bar, click the left mouse

button to scroll the document down. Click the right mouse button to

scroll it back up.

To scroll the document by fewer lines of text, click near the top in the

scroll bar. To scroll by more lines at once, click near the bottom in the

scroll bar.

Finally, to exit Oberon, left-click on the Close button ("x") in the

upper-right corner of the Oberon system window . The window then

closes, leaving you in the Raspberry Pi operating system.

The next time you start Oberon, the document you're reading now will

automatically reappear, so you can continue reading it.

WHAT IS OBERON?

Oberon is a complete software environment for personal computers. It

includes both the Oberon operating system and the Oberon programming

language.

This name-sharing is no accident: Oberon is unusual for how tightly it

integrates the operating system with the programming language. The

language was expressly designed to write the system, while the system is

structured to reflect key features in the language.

1

Here are the original goals for Oberon, as expressed by its designers:

	 – Make it simple. Oberon includes only the basic features necessary to

	 support facilities such as windowing systems and object-oriented

	 programming.

	 – Make it small. One person can learn and understand the entire

	 software system. Oberon consists of less than 15,000 lines of source

	 code (which is included as part of the system). And the compiled code

	 is less than 200 kB.

	 – Make it extensible. The Oberon operating system is structured as a

	 set of modules, with each module providing a specific operating

	 system service (files, menus, etc.). But because modules are a key

	 feature in the Oberon language, users can develop additional

	 modules which have the same functionality as the operating system

	 modules. This makes the Oberon system fully extensible, even at

	 runtime.

	 – Make it productive. Oberon offers one-click access to the most

	 common commands for any task. The compiler is fast, and no linking

	 is required. One of the designers of the Go programming language

	 used Oberon while he was a graduate student, and has described

	 the system as "extremely productive".

	 – Make it useful. Oberon is a stable and reliable platform for developing

	 and delivering large applications. It has been used on a daily basis by

	 both technical and non-technical users. The Oberon system has been

	 ported to Intel, ARM, RISC-V, and custom hardware processors.

Sources

"Project Oberon: The Design of an Operating System, a Compiler, and a

Computer, Revised Edition 2013". Niklaus Wirth and Jurg Gutknecht.

"GopherCon 2015: Robert Griesemer – The Evolution of Go". YouTube.

 https://youtu.be/0ReKdcpNyQg?si=ua3WP4PUJLhDWXwU

2

WHY SHOULD I LEARN IT?

Oberon is a forty-year-old software system with a programming

language that is now considered historical (even though most current

languages offer the same features as Oberon).

So if your goal is to master today's popular languages and operating

systems, then Oberon is not for you.

However, Oberon is also a complete, powerful software system written

in fifteen thousand lines of source code. So if you are interested in

studying source code to learn how system software works, then Oberon

compares favorably to the thirty million lines of source code in the

current Linux kernel.

And if you are interested in the design of user interfaces, Oberon is well

worth studying as an example of a user interface which offers a distinct

alternative to the standard UI paradigms of today's personal computers.

And finally, if you are interested in just learning how to use Oberon,

then the version of Oberon offered here will make it easier to learn.

This version includes some changes to the Oberon user interface which

will make it easier for you to learn the key parts of Oberon, by letting

you avoid the non-key parts that are known to be difficult for new users.

OBERON PI

The version of Oberon you're using here was originally the stand-alone

system software for a workstation built specifically for Oberon. This

workstation was based on a custom RISC processor which was also

built for Oberon. The result was called the "Oberon RISC Machine".

The RISC Machine version of the Oberon software was ported to the

Raspberry Pi with an emulator, which in this case is a C program that

executes on the Raspberry Pi operating system. This program simulates

the processor, memory, and peripherals of the Oberon RISC Machine.

The compiler in this version of Oberon generates object code for the

RISC processor, and it is this code that gets executed by the emulator.

And since the entire Oberon system has been compiled with this same

compiler, it too executes on the emulator.

3

The emulation extends to the Oberon file system, which exists separately

from the Raspberry Pi file system. The entire Oberon Pi system is stored in

the Raspberry Pi file system as a single file named “Oberon-System.dsk”.

This file is called the Oberon disk image file.

Files cannot be copied directly between the Oberon Pi and Raspberry Pi

file systems. Oberon Pi includes the Clipboard module which lets you

easily exchange text data between the two file systems.

Sources

"Project Oberon: The Design of an Operating System, a Compiler, and

a Computer, Revised Edition 2013". Niklaus Wirth and Jurg Gutknecht.

"Oberon RISC Emulator". Peter De Wachter. GitHub.

https://github.com/pdewacht/oberon-risc-emu

THIS DOCUMENT

This document is an introduction to the Oberon operating system.

It focuses on the unique aspects of the Oberon user interface, and

will be particularly useful to people studying the Oberon UI.

Note that this is not a programming guide – aside from a few

brief sections on language differences in the Oberon Pi system,

nothing is said about programming in Oberon, or programming

in general. (Such information can, however, be found in the

various books provided as PDF files with the Oberon Pi release.)

What this document is is a tutorial on the Oberon operating

system. It is designed to be read front-to-back, with the basic

concepts being presented first, and more advanced topics later.

Sources

"The Oberon System: User Guide and Programmer's Manual".

Martin Reiser.

"Programming in Oberon: Steps Beyond Pascal and Modula".

Martin Reiser and Niklaus Wirth.

4

HELLO, WORLD

In this section you will view, compile, and execute a module which

writes "Hello, world" in the Oberon display. You will do all this with

just three mouse clicks.

The module output will appear in a new window which opens below

the guide window you are currently reading.

NOTE – Whenever a new window opens below the guide window,

you may need to scroll this document down to continue reading it.

Click #1 – In the project window, move the mouse pointer over the

Oberon command name "Edit.Open", and click on this name with the

middle mouse button.

(On the Raspberry Pi, the mouse scroll wheel serves as the middle

mouse button. To click this button, press down on the scroll wheel.)

When you click on "Edit.Open", a new window opens below the

guide window. This new window is titled "Hello.Mod", and it contains

the source code for the "Hello" module.

Click #2 – In the project window, move the mouse pointer over the

Oberon command "OBC.Compile", and middle-click on it.

When you click on "OBC.Compile", the following messages appear in

the terminal window:

	 OB Compiler 8.1.25

	 compiling Hello 15 0 6D6EC60A

Click #3 – In the project window, move the mouse pointer over the

Oberon command "Hello.Hi", and middle-click on it.

When you click on "Hello.Hi", a second window appears below the

guide window. This new window is titled "Out.Text", and it

displays the output that was generated by executing the code in

the "Hello" module.

5

You have now compiled and executed "Hello World", in three mouse

clicks. Next, close the windows that were opened by this process.

In the menu bar of the "Out.Text" window, move the mouse pointer

over the command "Window.Close", and middle-click on it. The

"Out.Text" window then closes.

Do the same with the "Hello.Mod" window, to close it too.

At this point, the Oberon display should now look the same as it did

originally (except for the compiler messages remaining in the

terminal window).

COMMANDS

Oberon command names always appear as two words joined by a ".":

	 Edit.Open

	 OBC.Compile

	 Hello.Hi

	 Window.Close

The first word is the name of the service that the command belongs to

(Edit, OBC, Hello, Window).

The second word is the name of a specific command within the service

(Open, Compile, Hi, Close).

To execute a command, move the mouse pointer over either word of

the command name, then middle-click on it.

The Oberon user interface is unusual because anywhere a command

name appears in the Oberon display, that name can be used to

execute the command.

For example, in the previous section ("Hello, World") you executed

commands that appeared in both the project window (Edit.Open)

and the window menu bars (Window.Close).

6

Now try executing the name "Edit.Open" that appears below in the

following command:

	 Edit.Open Hello.Mod

It worked. To close the window that just opened, execute the

command Window.Close in the new window's menu bar.

Next, type the command "Edit.Open Hello.Mod" into the terminal

window, and execute the command name there. Close the new

window the same way you did before.

Command names can even be executed from Oberon modules.

For example “Edit.Open CmdDemo.Mod”.

While a command can be executed anywhere in Oberon, it's important

to note that the command itself must be valid. This means the following:

	 – The first word in the command must be the name of

	 an executable module in the Oberon system.

	 – The second word must be the name of a procedure

	 declared in the specified module.

	 – The procedure must be declared in its module with no

	 parameters, and must also be exported from its module.

For an example of a valid command, see how the procedure "Hi" is

declared in the file "Hello.Mod". The asterisk after the procedure

name specifies that this procedure is exported from its module.

NOTE – The command "System.ModuleCommands" lists all the

commands defined in a module. For example:

	 System.ModuleCommands Hello

7

If you execute an invalid command in Oberon, different things may

happen depending on the command. For example, if you execute

"Edit.Open" without a parameter, the command does nothing.

In other cases (such as misspelling a command), an error message

will appear:

	 Call error: Eddit module not found

	 Call error: Openn command not found

If a command does not finish executing, it may prevent you from

executing any more commands in the Oberon system. If this

happens, use the keyboard command Ctrl-Shift-Delete to halt the

runaway command, and regain control of the Oberon system.

The halt command displays a message in the terminal window,

listing the memory address where the runaway command was

halted:

	 ABORT 0001189C

WINDOWS

Oberon uses windows to display multiple files (and even multiple

applications) on the screen at the same time.

But unlike conventional GUI interfaces, windows in Oberon never

overlap each other. Instead, they are tiled to fit next to each other

on the screen.

NOTE – Because tiling windows on the screen is not as space-efficient

as overlapping them, Oberon should be used only on computers with

relatively large screens (20" or more is recommended).

8

A window in Oberon consists of a rectangular area on the display,

with a menu bar displayed (in highlighting) across the top of the

window, and an optional scroll bar on the left.

The leftmost word in a menu bar is the window title. The words to the

right of the title are Oberon commands associated with the window.

As you've already seen, when multiple windows are open in Oberon,

each window may not be big enough to usefully view or edit its contents.

For this Oberon provides two commands which let you quickly enlarge

a window you want to work on, and then restore that window to its

previous size when you are done using it:

	 – "Window.Open" opens a window to its next bigger size

	 on the Oberon display (either full height, or full screen).

	 – "Window.Close" closes an opened window back to its

	 previous size and position on the display.

NOTE – Think of these commands as working like real-life windows,

which can be opened and closed incrementally.

Opening a window does not affect the other windows it covers up –

they will be restored on the screen when you close the window.

Closing a window that is already in its original size and position will

remove the window from the display. The close command thus serves

two functions: restoring an opened window to its previous size, and

removing a window from the display.

Fortunately, if you execute one too many close commands and

accidentally remove a window you wanted to keep open, the following

command will reopen the removed window:

	 Window.Reopen

9

To see how all this works, open two additional windows below this

one by executing the following two commands:

	 Edit.Open Filter.Mod

	 Sierpinski.Draw

Then try out the commands "Window.Open" and "Window.Close"

(and if necessary, "Window.Reopen") on all three windows.

NOTE – You can move or resize a window after it has been opened.

For details see "WINDOW MANAGEMENT".

FILES

Oberon stores all of its files in a single directory – there are no

subdirectories or file folders. (This type of file system is known as

a flat file system.)

To list all the files in the directory, use the following command:

	 System.Directory

This opens a new window titled "Directory", which appears under

the project window.

Scroll the directory window, and you'll see that the Oberon system

contains a long list of files.

To make the file listing more useful, close the newly-opened

directory window, and then execute the following command:

	 System.Directory Hello*

This time the directory window lists just the files associated with

the Hello module.

The wildcard character ‘*’ allows the Oberon file system to work

more like a hierarchical file system. 

10

You can also use the wildcard character to list all the files of a

given type:

	 System.Directory *.Mod

The type of a file is usually indicated by adding a file type suffix to

the end of the file name. Here are the common file type suffixes:

	 .Mod	 	 module source file

	 .rsc	 	 module object file

	 .smb	 	 module symbol file

	 .Doc	 	 module document file

	 .Proj	 	 project file

	 .Cmd	 	 command file

	 .Guide		 user guide file

	 .Chap		 user guide TOC file

	 .Text	 	 text file

	 .Bak	 	 backup file

	 .Fnt	 	 font file

	 .Graph	 draw graphics file

	 .Lib	 	 draw library file

Module source files are conventionally named after the module

they contain ("Hello.Mod" for module “Hello").

Module object and symbol files are created by the compiler

when you compile a module source file.

Backup files are created by the editor whenever you save a file

with the same name as an existing file.

Be sure to learn all the file type suffixes – because file names

(Hello.Mod) look so much like command names (Hello.Hi), the

suffixes are the only way you can tell the difference.

NOTE – The file names "Project", "Commands", “Chapters”, and

“Guide" (all with no suffix) are reserved for use by the Oberon

startup windows.

11

DOCUMENTS

Whenever an Oberon window contains text and a scroll bar,

that text is effectively a document, and can be navigated with

the document mouse commands.

You've already been using the basic mouse commands to scroll

through this document as you read it. Here are all the mouse

commands for moving around in a document:

	 Left Click	 	 Scroll document down

	 Right Click	 	 Scroll document up

	 Shift Left Click	 Jump to end of document

	 Shift Right Click	 Jump to beginning of document

	 Middle Click	 	 Jump to specific part of document

Remember that these commands work only when the mouse

pointer is inside a scroll bar. (If outside, they become different

commands.)

When you scroll a document down, note how the specific text

line that you left-click next to gets moved to the top of the

window. This lets you control how many lines to scroll each

time, from a single line to an entire window of text.

NOTE – If you have trouble seeing which text line is next to the

mouse pointer, hold down the left mouse button and drag the

mouse up and down inside the scroll bar. When you do this, the

current text line gets underlined in the window, to show which

line will move to the top when you release the mouse button.

To quickly jump to a specific part of the document, click the middle

mouse button in the scroll bar. The position of the mouse pointer in

the scroll bar (top, bottom, middle, etc.) determines what part of

the document (beginning, end, middle, etc.) will be jumped to.

12

To quickly jump to the beginning or end of the document, hold

down the keyboard Shift key while you click the left or right

mouse button anywhere in the scroll bar. Shift-left-click jumps to

the end of the document, while shift-right-click jumps to the

beginning.

PROJECTS

The project window contains all the commands you regularly use

to perform a specific task in Oberon. (This could be writing a book,

developing software, or just the daily use of certain applications.)

As you've already seen in previous sections, you can execute any

command in the project window simply by middle-clicking on the

command name.

And because the project window is a text window, and the

window contents are a text file, you can easily create new project

files, or customize existing project files to make them more useful

for their tasks. (This is one of Oberon's most powerful features.)

To open an additional project file, use the following command:

	 System.Open Hilbert.Proj

A new window opens below the project window, displaying the

project file for the module named "Hilbert".

The command "System.Open" is equivalent to "Edit.Open", except

that it opens the new text window on the right side of the Oberon

display. Note how the title of this new window is the project file

name ("Hilbert.Proj") instead of "Project".

To make your own project file appear in the project window,

rename the file as "Project" (without any file suffix). When Oberon

starts up, it recognizes this file name as the system project file.

13

NOTE – Don't rename your project file until you first rename the

current system project file back to its original project file name.

TERMINAL

The terminal window is used for two things:

	 – As a convenient place to type in and execute commands

	 that aren't available in the project window.

	 – As a place for certain commands (such as OBC.Compile)

	 to output their status and result information.

Like the project window, the contents of the terminal window

can be edited like a text file.

Thus any commands that you have already typed into the terminal

window can be executed repeatedly. Or you can edit an existing

command there, to create variations on the same command.

Note, however, that the terminal window differs from the other

windows in several ways:

	 – Its menu bar has no "Edit.Save" command, so the window

	 will be empty every time you restart the Oberon system.

	 – Its menu bar includes the command "Edit.Locate", which

	 is used to locate syntax errors while compiling a module.

	 – Its menu bar includes the command "Window.Clear",

	 which erases the contents of the terminal window.

Note also that the terminal window does not automatically

scroll down when lines of output are written below the bottom

of the window. With "Window.Clear" you can erase the terminal

window entirely, before the output reaches the bottom.

14

The commands "Window.Open" and "Window.Close" let you

open and close the terminal window.

If you accidentally close the terminal window, execute the

command “Window.Reopen” from another text window, and

the terminal window will reappear in the Oberon display.

TEXT

To enter text on the screen, move the mouse pointer into a text

window, then click on the left mouse button.

The mouse pointer changes into a wedge-shaped pointer named

the text cursor.

When you enter text from the keyboard, it appears onscreen next

to the text cursor.

Along with entering text, the text cursor is also used to edit text,

and to mark the current window for certain commands (such as

Edit.Cut, Edit.Paste, and Edit.Locate).

While different in shape, the text cursor works similarly to the

"I-beam" cursor used in other operating systems. It's always

positioned between two characters, and shows where the text

you type will be entered.

To move the text cursor left or right on the current text line, hold

down the left mouse button and drag the mouse left or right.

When you do this, the text cursor jumps from character to

character along the text line.

NOTE – While you drag the text cursor left or right, it sticks to the

current text line, even if you move the mouse up or down a little

while you drag. To move the cursor off the current line, release

the left mouse button and then move the mouse up or down.

15

To remove the text cursor from the screen, press the Esc key.

To see how the text cursor works, execute the following command:

	 Edit.Open MyHello.Mod

Then try out the text cursor and Esc key in the newly-opened

window.

NOTE – The text cursor cannot be moved with the keyboard arrow

keys. It can only be moved with the mouse, as described above.

SELECTION

To select text on the screen, move the mouse pointer over the

beginning of the text, then press on the right mouse button, and

drag the pointer down or to the right.

The selected text is highlighted as you drag the pointer over it,

and remains highlighted when you release the right mouse button.

To unselect the selected text, press the Esc key.

Text selection is used for two things:

	 – To specify text for the standard text-editing commands

	 (Edit.Cut, Edit.Copy).

	 – To specify parameters for non-editing commands that

	 accept text selections as parameters (Edit.Search).

To quickly select a word (hello), command name (Hello.Hi), or file

name (Hello.Mod), position the mouse pointer anywhere over the

item and right-click twice, without moving the pointer.

16

To quickly change an existing selection, move the mouse pointer

below or to the right of the beginning of the current selection,

then press the Shift key, and click on the right mouse button.

(This command is usually written as shift-right-click.)

To see how the selection commands work, try using them on the

text in this document.

NOTE – If you try to continue selecting text below the bottom of

a window, instead of scrolling the window, the selection simply

stops at the bottom of the window. Making large selections is

described in "WINDOW MANAGEMENT".

EDITING

To edit a document use the standard editing commands:

	 – Edit.Cut

	 – Edit.Copy

	 – Edit.Paste

	 – Edit.Undo

Edit.Cut and Edit.Copy operate on the current text selection.

Edit.Paste inserts the recently cut or copied text at the current

position of the text cursor.

Edit.Undo undoes the result of the preceding cut or paste command.

NOTE – Before you use any of these editing commands, you must

first set the text cursor in the window where you are editing. Doing

this lets these commands know which window is being used. For

details see “WINDOW SELECTION”.

17

The standard keyboard shortcuts are defined for these editing

commands:

	 Ctrl-X	 	 Edit.Cut

	 Ctrl-C		 Edit.Copy

	 Ctrl-V	 	 Edit.Paste

	 Ctrl-Z	 	 Edit.Undo

The Edit.Undo command is limited. It works only for the cut and

paste commands. Only one level of undo is supported. And the

text cursor must still be in the same position it was after the

preceding cut or paste command.

The Backspace key can be used to delete individual characters

from a text. No undo is available for backspaced text.

The text editor does not perform word-wrapping. To start a new

line in the text, you must use the keyboard Enter key.

SEARCH

To search for text in a document, use the Edit.Search command.

This command appears in the menu bar of most windows.

To use Edit.Search, first select an instance of the string you want

to search for. (If the string doesn't appear in any text window,

type it into the terminal window, and select it there.)

Then execute the Edit.Search command in the menu bar of the

window you're searching in.

If the search string is found, the document scrolls to show the

text cursor positioned at the end of the found string.

If the search string is not found, the command does nothing.

18

To find all the instances of the search string in a document,

repeatedly execute the Edit.Search command. Each time you

execute it, the text cursor moves to the next instance of the

search string in the document.

When the search command reaches the end of a document, it

stops searching. (Note that it does not wrap around to the

beginning of the document.)

The search command always starts searching at the current

position of the text cursor. If the text cursor is not set in the

document, then the search begins at the start of the document.

NOTE – Pressing the Esc key clears the text cursor.

To see how searching works, try using it to navigate the Oberon

user guide you’re reading now.

First, execute the Window.Open command that appears in the

menu bar of the chapter window.

The opened chapter window displays the table of contents for

the Oberon user guide.

You’re now ready to jump to a different section in the user guide.

In the chapter window, first press the Esc key, then select the

title of the section about Oberon books.

Next, execute the Edit.Search command that appears in the

menu bar of the guide window.

The guide window will then jump to the section in the user guide

that describes the Oberon books.

NOTE - When you’re jumping forward in a document, you can

skip pressing the Esc key. Why?

—

19

This section has described only how to search for text in a

document. To replace text, use the Filter.Replace command.

For more information "Edit.Open Filter.Doc”.

SAVING

To save a document, execute the Edit.Save command that appears

in the menu bar of the document's window.

The saved document is stored in a file with the same name as the

title of the the document window.

The Edit.Save command can also be executed from any document

that the command name appears in.

However, before you can use the command this way, you must

first specify two things:

	 1) The document to save

	 2) The file name to save to

The document is specified by marking its window with the

location marker. This is a star-shaped symbol which can be

placed at any location on the display (including inside a window).

To mark a window for saving, move the Oberon mouse pointer

inside the window and press the Ctrl-A key. The star symbol then

appears on the screen next to the mouse pointer.

The file name to save to is specified as a parameter following the

command name. For example:

	 Edit.Save Hello.Mod

The command parameter for the Edit.Save command can be a

text selection instead of a file name. For example:

	 Edit.Save ^

20

When the file name parameter is a caret character ‘^’, the

command uses the current selection as the file name to save

the document to.

NOTE – The caret character is commonly known as the "hat"

character. It appears on the Pi keyboard as the Shift-"6" key.

If a file is saved with the same name as a file that already

exists, the Edit.Save command automatically renames the

existing file to be a backup file. This prevents the existing

file from being deleted by the newly-saved file.

A backup file is created by adding the file suffix ".Bak" to

the name of an existing file. For example:

	 Document

	 Document.Bak

	 Hello.Mod

	 Hello.Mod.Bak

To preserve a backup file, you must rename it with a

different file name, and no ".Bak" suffix. For example:

	 System.RenameFiles Hello.Mod.Bak => Hello2.Mod ~

Oberon expects you to be mindful when using the file system

(especially when saving a file with a different file name).

The Oberon system will not notify you when an existing file

gets overwritten by a new file. Instead, it simply creates a

backup file so you can recover the overwritten file.

But backup files themselves offer you only one chance to recover

an accidentally overwritten file. If instead you perform a second

save on a newly-saved file, this will overwrite the current backup

file with a copy of the new file, and the original file will be lost.

NOTE – Whenever you save a file, a message appears in the

terminal window, listing the name and size of the saved file.

21

OPENING

To open a document for editing, execute the command Edit.Open.

For example:

	 Edit.Open Hello.Mod

The command parameter ("Hello.Mod" in this case) specifies the

file name of the document.

If a file with that name already exists, then the document stored

in that file opens in a new window.

If the specified file does not exist, a new empty window opens,

with the window title set to the command parameter:

	 Edit.Open Mxyzptlk.Text

The Edit.Open command opens its document window on the left

side of the Oberon display.

To open a document window on the right side of the display,

execute the command System.Open:

	 System.Open Hello.Proj

Except for where they open document windows, the Edit.Open

and System.Open commands do the same thing.

NOTE – Oberon will let you open multiple instances of the same

document. This should be avoided, as you may lose some changes

if you happen to edit both copies of the document.

Edit.Open and System.Open normally open their windows on

the left and right sides of the display, respectively.

You can override this behavior by using the Oberon

location marker to specify where on the display that these

commands will open their document window.

22

To do this, move the Oberon mouse pointer to a location on the

display and press the Ctrl-A key. The location marker's star

symbol then appears on the screen next to the mouse pointer.

Next, use Edit.Open or System.Open to open a new document

window. The new window will be opened on the display at the

position of the location marker.

NOTE – You can move or resize a window after it has been

opened. For details see "WINDOW MANAGEMENT".

The command parameter for Edit.Open or System.Open can be

a text selection instead of a file name. For example:

	 Edit.Open ^

	 System.Open ^

When the file name parameter is a caret character ‘^’, the

command uses the current selection as the file name of the

document to open.

NOTE – The caret character is commonly known as the "hat"

character. It appears on the Pi keyboard as the Shift-"6" key.

WINDOW SELECTION

The Oberon system is unusual because anywhere a command

name appears in the Oberon display, that name can be used to

execute the command.

Oberon can also display multiple windows at the same time.

Taken together, these two properties raise a user interface

question: when a command is executed, which window does

it apply to?

23

The Oberon system provides several features to manage this

issue:

	 – Menu commands

	 – Focus window

	 – Marked window

Menu commands are the command names listed across the

top of a window. These commands are defined to always

operate on the window they belong to.

The focus window is the window that all of the Oberon content

commands operate on. This includes the cut, copy, and paste

commands, along with all the keyboard commands that

manipulate the data in a window.

To specify a window as the focus window, set the text cursor

anywhere in the window (by left-clicking the mouse).

The marked window is the window that certain Oberon

commands operate on. This includes the Clipboard commands,

Edit.Save when it is used outside of a menu bar, and other

commands that operate on entire windows.

To specify a window as the marked window, set the location
marker anywhere in the window (by pressing the Ctrl-A key).

The focus window and marked window share an important property:

 – If you try to use a command that requires a focus or marked

	 window, but without first setting the window you're working on

	 as focus or marked, then the command in question will either

	 not work at all, or will work in unexpected ways (because it

	 accessed a different window than the one you expected).

24

The most dramatic case of not setting the focus window involves

the commands Edit.Copy and Edit.Paste. New Oberon users

assume that selecting text in a window is enough for Edit.Copy

to properly copy the selected text.

But this assumption is not true – a text selection does not set

the focus window. This can only be done by setting a text cursor

in the window before using Edit.Copy to copy the text selection.

What happens if you don't do this is that Edit.Copy appears to

copy the selected text. But when you then use Edit.Paste to

paste the supposedly copied text, the text that gets pasted is

completely different from the text you thought you copied.

This different text is in fact the contents of the clipboard from

a previous Edit.Cut or Edit.Copy command (which was properly

done on the text in a focus window).

Once you develop the habit of setting the focus window before

working on it, this kind of scenario will no longer happen to you.

The escape key (Esc) erases the current text cursor, location

marker, and text selections from the Oberon display.

NOTE – Esc unfocuses the current focus window. But it does not

unmark the current marked window. The only way to do this

is to set the location marker in a different window.

Location markers specify locations in the display. If you move

a window after setting a location marker in it, the location

may no longer be in the moved window.

NOTE – For more information on moving a window, see

"WINDOW MANAGEMENT".

25

FILE MANAGEMENT

The Oberon system includes commands used to perform the

following file system operations:

	 – Copying/renaming/deleting files

	 – Listing file attributes (date, size)

To copy one or more files in the file system, use the command

System.CopyFiles. For example:

	 System.CopyFiles Hello.Mod => Temp.Mod ~

	 System.CopyFiles A.Text => X.Text B.Text => Y.Text ~

This command accepts a parameter list of one or more

file name transforms.

Each transform consists of three parts: the name of the file to

copy ("Hello.Mod"); the transform operator ("=>"); and the name

of the copied file ("Temp.Mod").

NOTE - The parameter list must end with a tilde character (‘~’).

Each of the specified files is copied in the file system, with the

copies having their assigned file names.

When a copy is successful, a status message appears in the

terminal window. For example:

	 copying

	 Hello.Mod => Temp.Mod

To rename one or more files in the file system, use the command

System.RenameFiles. For example:

	 System.RenameFiles Helo.Mod => Hello.Mod ~

	 System.RenameFiles A1.Text => A2.Text B1.Text => B4.Text ~

This command is identical to System.CopyFiles, except that it

renames the specified files instead of copying them.

	

26

To delete one or more files from the file system, use the

command System.DeleteFiles. For example:

	 System.DeleteFiles Temp.Mod ~

	 System.DeleteFiles Filter.rsc Old.Text Draft.Doc ~

This command accepts a parameter list of one or more

file names (not file name transforms).

NOTE - The list must end with a tilde character (‘~’).

Each of the specified files is deleted from the file system.

When a delete is successful, a status message appears in the

terminal window. For example:

	 deleting

	 Temp.Mod

The file management commands must be used with care:

	 – They perform minimal error checking on their command

	 parameters.

	 – If a file with the same name already exists, the copy and

	 rename commands will overwrite the existing file.

	 – No backup files are created for any files overwritten or

	 deleted.

	 – If the tilde character (‘~’) is omitted on a command that

	 accepts a parameter list, the command will treat any

	 text in the window that follows the command – even on

	 subsequent text lines – as additional parameters to be

	 processed by the command. This can lead to unexpected

	 results (especially when using the delete command).

27

The System.Directory command is used to list the files stored in

the file system. For example, the following command:

	 System.Directory Hello*

... lists these files in the directory window:

	 Hello.Mod

	 Hello.Proj

NOTE – For details on System.Directory see "FILES".

To list the file date and size along with the file names, add

an exclamation mark character (‘!’) to the end of the

System.Directory command parameter. For example:

	 System.Directory Hello*!

... creates the following directory listing:

	 Hello.Mod	 23-12-17 02:38:00 145

	 Hello.Proj	 23-10-22 21:50:37 370

The date shows when the file was last updated.

The size shows the file size (in bytes).

NOTE – For details on file dates see “UTILITIES".

—

WINDOW MANAGEMENT

The Oberon system includes commands used to perform the

following window operations:

	 – Moving windows

	 – Splitting windows

	 – Making large selections

28

To move a window up or down in the Oberon display, first

position the mouse pointer anywhere in the window's menu

bar, then press and hold the left mouse button.

The highlighting disappears from the menu bar, to show that

the window is ready to move.

Next, move the mouse pointer up or down, to where you want

the window menu bar to appear in the display.

NOTE – While you can move the mouse pointer anywhere in

the display, the window can only be moved up or down from

its current position.

Finally, release the mouse button. The window menu bar

reappears at the specified location.

To split a window in the Oberon display, execute the

Window.Split command that appears in the window's menu

bar.

This command opens a new window which has the same title

and document text as the original window.

But this new window does not contain a copy of the original

document. Instead, it provides a separate view into the same

document that is in the original window.

With split windows, any change you make to the document

in one window will automatically appear in the other window.

When you close a split window, only the specified window

gets closed. The other window remains open, allowing you to

continue editing the document.

NOTE – Split windows are useful when you need to view one

part of a document while editing another part. They are also

used to make large selections in a document.

29

The Oberon system has a restriction which makes working

with selections more difficult than in other operating systems.

Namely:

	 – A text selection cannot be larger than the window

	 that contains it.

If you try to continue selecting text below the bottom of a

window, instead of scrolling the window, the selection simply

stops at the bottom.

To make a large selection in a document, first execute the

Window.Split command in the document's window.

This opens a new window which provides a separate view

into the document.

Next, scroll the topmost split window to where the beginning

of the large selection should be, and right-click on the

beginning text there. As usual, the text you selected is

highlighted to show it has been selected.

Now scroll the other split window to where the end of the

large selection should be, and right-click on the ending text

there. As before, the text you selected is highlighted to show

it has been selected.

At this point you have created a large selection. It includes not

only the highlighted text in the two selections in the two split

windows, but also all the unhighlighted text in the document

that lies between the two selections.

The large selection can now be cut, copied, and pasted as if it

were a single regular text selection.

NOTE – The two regular selections that define a large selection

can themselves be any size (as long as they fit in their windows).

Also, the cut and copy commands require the text cursor to be

set in one of the split windows.

30

COMMAND PARAMETERS

Most commands in the Oberon system require parameters.

Depending on the command, these may be specified in

several ways:

	 – One or more text items following the command name

	 – A text selection

	 – A window selected with a text cursor or location marker

This section describes the text items that commonly follow a

command name.

Six types of text items follow a command name:

	 – File name

	 – Module name

	 – Word transform

	 – File name list

	 – Module name list

	 – File name transform list

A file name is accepted as a parameter by many commands.

For example:

	 Edit.Open Hello.Mod

	 System.SetFont Oberon8.Scn.Fnt

	 Edit.Save ^

When the file name parameter is specified as a caret character

‘^’, the command uses the current selection as the file name.

NOTE – The caret character is commonly known as the "hat"

character. It appears on the Pi keyboard as the Shift-"6" key.

31

A module name is accepted as a parameter by one command:

	 System.ModuleCommands Edit

The parameter must be a module name ("Edit"), not a module

file name ("Edit.Mod").

A word transform is accepted as a parameter by one command:

	 Filter.Replace village => town

The transform consists of three parts: the word to be transformed

("village"); the transform operator ("=>"); and the transformed

word ("town").

The words in the transform are specified without any delimiting

quote characters.

NOTE - For more information on the Filter.Replace command,

“Edit.Open Filter.Doc".

A file name list is accepted by two commands:

	 System.DeleteFiles Old.Text Draft.Doc ~

	 OBC.Compile Out.Mod Hello.Mod ~

The list can include one or more file names.

The list must end with a tilde character (‘~’).

A module name list is accepted by one command:

	 System.UnloadModules Hello Out ~

The list can include one or more module names.

The list items must be module names ("Hello"), not module

file names ("Hello.Mod").

The list must end with a tilde character (‘~’).

32

A file name transform list is accepted by two commands:

	 System.CopyFiles Hello.Mod => Temp.Mod ~

	 System.RenameFiles Memo.Text => Save.Text ~

The list can include one or more file name transforms.

Each transform consists of three parts: the name of the file to

transform ("Hello.Mod"); the transform operator ("=>"); and the

name of the transformed file ("Temp.Mod").

The list must end with a tilde character (‘~’).

Oberon includes a command file which lists all the Oberon

commands and their parameters.

Keeping this file open on the display gives you a quick reference

for the commands. It is also useful as a source for creating

project files.

For more information on the command file see "DISPLAY".

DISPLAY

The display refers to all the text and graphics that the Oberon

system displays on your computer screen. It is the visible part of

the Oberon user interface (or "UI").

A common misimpression of the Oberon system is that it has a

text user interface, a type of UI that was common on personal

computers before the graphical user interface became popular.

In fact, the Oberon system has a graphical user interface:

	 Sierpinski.Draw

33

The reason for the confusion is that the Oberon designers

purposely set out to create a hybrid of the traditional text user

interface and graphical user interface, with the goal of creating

a UI that is more productive than both.

The Oberon display uses windows to display multiple documents

(and even multiple applications) on the screen at the same time.

But unlike conventional graphical user interfaces, windows in

Oberon never overlap each other. Instead, they are tiled to fit

next to each other on the screen.

The display is divided by a vertical line into two parts, which are

called tracks. Windows can appear in either track.

The user track is the larger area on the left side of the display.

This is where users create windows to perform their computing

work. (The document you're reading here is in the user track.)

The system track is the smaller area on the right side of the

display. It is used to present system information which supports

the computing work done in the user track.

The terminal window always appears in the system track. The

project, command, and chapter windows conventionally appear

there too.

The commands Edit.Open and System.Open are functionally

equivalent, but one opens windows in the user track, while

the other opens windows in the system track.

When the Oberon system first starts up, the only window that

always appears in the display is the terminal window.

The others – namely, the guide, project, command, and

chapter windows – are optional startup windows whose

appearance and contents are user-defined:

34

	 – If a text file is named "Guide" (with no file suffix), it

	 will appear in the user track as the guide window
	 when the system starts up.

	 – If a text file is named "Project" (with no file suffix), it

	 will appear in the system track as the project window
	 when the system starts up.

	 – If a text file is named "Commands" (with no file suffix), it

	 will appear in the system track as the command window
	 when the system starts up.

	 – If a text file is named "Chapters" (with no file suffix), it

	 will appear in the system track as the chapter window
	 when the system starts up.

Copies of the default guide, project, command, and chapter

files are available in the files “Oberon.Guide", "Hello.Proj",

“Oberon.Cmd”, and “Oberon.Chap”.

The Oberon display normally appears as a window (named

"Oberon") in the Raspberry Pi operating system.

You can change the Oberon display to appear in full-screen

mode by pressing the F11 key. Pressing this key again returns

the display to window mode.

NOTE – This key appears on the Pi keyboard a the Fn-"F1" key.

—

MOUSE

The Oberon system requires a three-button mouse, with the

three buttons referred to as the left, right, and middle button.

On the Raspberry Pi, the mouse scroll wheel serves as the middle

button. To click this button, press and release the scroll wheel.

NOTE – The scroll wheel works only as a mouse button, and

cannot scroll an Oberon document.

35

Oberon defines separate commands for each mouse button

(left, right, middle) while clicking or dragging the mouse.

The Shift key is used in some mouse commands.

	 Left Click	 	 Set text cursor

	 Middle Click	 	 Execute command

	 Right Click	 	 Select text

	 Right Click Twice Select word/command name/file name

	 Left Drag	 	 Move text cursor one character left or right

	 Middle Drag	 	 Change underlined word/cmd name/file name

	 Right Drag	 	 Extend text selection

	 Shift Middle Click	 Execute command (after unloading module)

	 Shift Right Click	 Change text selection

The document navigation commands work only when the mouse

pointer is inside a scroll bar. (If outside, these commands become

different mouse commands.)

 Left Click	 	 	 Scroll document down

 Right Click		 	 Scroll document up

 Shift Left Click 	 	 Jump to end of document

 Shift Right Click 	 Jump to beginning of document

 Middle Click	 	 Jump to specific part of document

 Left Drag 	 	 	 Underline current text line

36

KEYBOARD

In the Oberon system the keyboard is used for the following:

	 – Entering text

	 – Certain mouse commands (with the Shift key)

	 – Keyboard shortcuts for basic editing commands

	 – Keyboard commands for various system operations

The escape key (Esc) performs a specific operation in the

Oberon system. It erases the current text cursor, location

marker, and text selections from the Oberon display.

The arrow keys are not used in this version of the Oberon

system. All cursor movement is done with the Oberon mouse

commands.

The Caps Lock key is not used in this version of the Oberon

system. To type upper-case letters you must use the Shift key.

The Shift key is used in certain mouse commands. For details

see "MOUSE".

These keyboard shortcuts are defined for the basic editing

commands:

	 Ctrl-X	 	 Edit.Cut

	 Ctrl-C		 Edit.Copy

	 Ctrl-V	 	 Edit.Paste

	 Ctrl-Z	 	 Edit.Undo

37

These keyboard commands perform various operations in the

Oberon system:

	 Ctrl-A sets the location marker at the current position of the

	 mouse pointer.

	 Ctrl-Shift-Delete halts a runaway Oberon command, enabling

	 you to regain control of the Oberon system.

	 Alt-F4 closes the Oberon system window. It is equivalent to

	 clicking on the window's Close button ("x").

	 F11 switches the Oberon system window between window

	 mode and full-screen mode.

	 F12 is equivalent to Ctrl-Shift-Delete.

NOTE – F11 and F12 appear on the Pi keyboard as Fn-F1 and Fn-F2.

38

CHARACTERS

The character encoding used in the Oberon system is based

on the ASCII standard. Each character is encoded as a 7-bit

value stored in one byte.

	 0	 NUL	 55	 7	 81 	 Q	 107	 k

	 9	 TAB	 56	 8	 82	 R	 108	 l

	 13	 CR	 57	 9	 83 	 S	 109	 m

	 32	 SP	 58	 :	 84	 T	 110	 n

	 33 	 !	 59	 ;	 85	 U	 111	 o

	 34 	 "	 60	 <	 86	 V	 112	 p

	 35 	 #	 61	 =	 87	 W	 113	 q

	 36 	 $	 62	 >	 88	 X	 114 	 r

	 37 	 %	 63	 ?	 89	 Y	 115	 s

	 38 	 &	 64	 @	 90	 Z	 116 	 t

	 39	 '	 65	 A	 91	 [117 	 u

	 40	 (66	 B	 92	 \	 118	 v

	 41)	 67	 C	 93]	 119 	 w

	 42	 *	 68	 D	 94	 ^	 120 	 x

	 43	 +	 69	 E	 95 	 -	 121 	 y

	 44	 ,	 70	 F	 96	 `	 122 	 z

	 45	 -	 71	 G	 97	 a	 123	 {

	 46	 .	 72	 H	 98	 b	 124	 |

	 47	 /	 73	 I	 99	 c	 125	 }

	 48	 0	 74	 J	 100	 d	 126	 ~

	 49	 1	 75	 K	 101	 e	 127	 DEL

	 50	 2	 76	 L	 102 	 f

	 51	 3	 77	 M	 103	 g

	 52	 4	 78	 N	 104	 h

	 53	 5	 79	 O	 105	 i

	 54	 6	 80	 P	 106	 j

	 	

In Oberon the ASCII caret character (94) appears as a

“hat” character (‘^’).

The minus character (45) appears as a dash (‘–’), while the

underscore character (95) appears as a hyphen (‘-’).

39

Character codes 26-31 are non-standardly defined to display

basic media player symbols (Forward, Stop, Back).

These symbols cannot appear in Oberon text documents,

but in the Oberon language their numeric codes can be

assigned to character variables (with the CHR function),

which in turn can be written to the Oberon display.

Oberon text documents typically contain two of the

nonprinting characters (TAB, CR).

FONTS

The Oberon system supports multiple text fonts.

This version of Oberon includes a single font family named

"Oberon". Fonts in this family are available in four sizes (8, 10,

12, and 16 point), with italic and bold variants available for

several sizes.

Each font is stored in a separate font file in the Oberon system:

	 Oberon8.Scn.Fnt

	 Oberon8i.Scn.Fnt

	 Oberon10.Scn.Fnt	 (default system font)

	 Oberon10i.Scn.Fnt

	 Oberon10b.Scn.Fnt

	 Oberon12.Scn.Fnt

	 Oberon12i.Scn.Fnt

	 Oberon12b.Scn.Fnt

	 Oberon16.Scn.Fnt

40

The following commands are used to change the font:

	 Edit.ChangeFont Oberon8i.Scn.Fnt

	 System.SetFont Oberon12.Scn.Fnt

Both of these commands accept a font file name as a command

parameter.

Edit.ChangeFont changes the font of the current text selection

to the specified font.

System.SetFont changes the current system font to the specified

font.

Edit.ChangeFont affects only the text in the current selection.

It does not affect any other text in the Oberon system, including

text that already has been typed, or will be subsequently typed.

NOTE – The "hat" character (‘^’) cannot be used as a command

parameter with Edit.ChangeFont, because this command is

already using the selection to specify the text to be changed.

System.SetFont affects only the current setting of the Oberon

system font. It does not affect any text that has already been

typed in the Oberon system. But all text subsequently typed

in the Oberon system will appear in the new font.

SYMBOLS

At first glance the Oberon system may appear to be wholly text-

based. But it also displays several graphic symbols, which show

the current system state.

41

Most of these symbols are pointers, which can be moved around

on the Oberon display by moving the mouse:

	 – Mouse pointer

	 – Scroll pointer

	 – Text cursor

	 – Location marker

The mouse pointer is an arrow-shaped pointer symbol. It is the

default pointer in the Oberon system, and is mainly used to set

one of the other Oberon pointers at a specific location in the

display. The mouse pointer is also used to select text, and to

move a window in the display.

The scroll pointer is similar to a mouse pointer, but with a

double-headed arrow symbol that points straight up and down.

The scroll pointer appears only when the mouse pointer is

positioned inside a window scroll bar. It is used to scroll the

contents of a window up or down.

The text cursor is a wedge-shaped pointer symbol. It is used to

edit text, and to set the current window as the focus window.

While different in shape, the text cursor works similarly to the

"I-beam" text cursor used in other operating systems.

The location marker is a star-shaped pointer symbol. It is used

to select a window (or display location) for certain Oberon

commands. This pointer is used less often than the other ones.

NOTE – The location marker typically gets erased by the

command it affects. It is also erased by the Esc key. But even

after the marker symbol is erased, the location it originally

marked is still recognized by the commands that use location

markers.

42

Along with the pointer symbols, the Oberon system displays two

other graphic symbols to show the system state:

	 – Position marker

	 – Change marker

The position marker is a small horizontal line which appears

inside a window scroll bar. When a file is longer than its

window, this line shows the relative position in the file of the

text that is currently visible in the window. When you scroll

the window, the line moves up or down in the scroll bar.

The change marker is a small hollow square which appears in

the upper-right corner of an Oberon text window. When you

make any editing changes in a window, the square automatically

appears. It disappears when you save the file.

NOTE – The change marker reminds you to save a file before

closing its window (or not to save if you accidentally change

a file while viewing it).

Some Oberon applications may define additional, application-

specific pointer symbols which are not described here.

The escape key (Esc) performs a specific operation in the Oberon

system. It erases the current text cursor, location marker, and

text selections from the Oberon display.

43

COMPILING

The Oberon compiler translates module source files into

executable object files.

To compile one or more source files, use the command

OBC.Compile. For example:

	 OBC.Compile Hello.Mod ~

	 OBC.Compile H1.Mod H2.Mod H3.Mod ~

This command accepts a parameter list of one or more

file names.

NOTE – The list must end with a tilde character (‘~’).

The compiler displays information on the compiled modules

in the terminal window. For example:

	 compiling Hello 15 0 6D6EC60A

If the compiler finds errors in the module source file, it lists the

errors in the terminal window. For example:

	 OBC.Compile HelloBad.Mod ~

	 compiling HelloBad

	 pos 98 no match

	 pos 104 no END

	 pos 113 period missing

To locate these errors in the module source file, you first need

to open the file (if not already open), and then enlarge its

window with Window.Open.

Next, set the text cursor anywhere in the file window.

Be sure to do this before continuing.

44

To locate one of the listed errors ("no match"), select its

position value ("98") in the terminal window, then execute

the Edit.Locate command in the terminal window's menu bar.

This command moves the text cursor in the file window to the

position in the source code where the compiler found the error.

To locate the other errors, repeat this procedure with their listed

position values.

Position values are zero-based byte offsets into the module

source file. They may become invalid if you edit the file before

viewing all the errors.

NOTE – Select a position value by right-clicking twice on it.

In the above example, the error listing includes three errors:

"no match", "no END", and "period missing".

The text cursor for the "no match" error points to the identifier

"He". In the Oberon language, this identifier must match the

identifier ("Hi") declared at the beginning of the procedure.

The text cursor for "no END" points to "End". In Oberon this

keyword must be "END", not "End".

"Period missing" is an invalid error message. The compiler is

not always able to recover from finding an error, and so will

sometimes report additional, invalid error messages. These

messages automatically disappear when you fix the preceding

errors in the module source code, and recompile the module.

45

When the compiler successfully compiles a module, it displays

the following message in the terminal window:

	 compiling Hello 15 0 6D6EC60A

These values are defined as follows:

	 – Name of module compiled (Hello)

	 – Number of instructions in object file (15)

	 – Global data size of module (0)

	 – Module key value (6D6EC60A)

Module keys are described later in this document.

After a module has been compiled, it can be executed

directly on the Oberon system – no linking is required.

The Oberon system can compile and execute modules

whose source code is embedded in a text document.

For details "Edit.Open OBC.Doc".

The Oberon compiler consists of four modules:

	 OBC 	 compiler

	 OBG	 code generator

	 OBS	 scanner

	 OBT	 symbol table 	

Only the first module contains a user command:

	 OBC.Compile	 Compile modules

46

SYMBOL FILES

The Oberon compiler translates a module source file into two

files: an object file and a symbol file. For example:

	 – Hello.rsc

	 – Hello.smb

The object file (.rsc) is the executable file for the module.

The symbol file (.smb) contains information that the compiler

uses to perform type checking between modules.

The Oberon language is modular. It allows you to make changes

to the internals of a module X, without forcing you to recompile

all of the modules that import X.

However, if you make any changes to the symbols exported by

a module X (i.e., the module interface), you are then required

to recompile all of the modules that import X.

The compiler uses symbol files to enforce this language rule.

When you compile a module for the first time, the compiler

automatically creates a new symbol file for the module. This

is shown in the status message that appears in the terminal

window:

	 compiling Hallo new symbol file 15 0 6D6EC60A

If you change the interface of an existing module and then try

to compile it, the following error message appears:

	 OBC.Compile Hallo.Mod ~

	 compiling Hallo

	 pos 127 new symbol file inhibited

The purpose of this error is to notify you that the module

interface has changed (in case you changed it by accident).

47

To compile a module with a changed interface, use the regular

compile command, but add an "/s" option to the end of the file

name parameter:

	 OBC.Compile Hallo.Mod/s ~

	 compiling Hallo new symbol file 15 4 CAC1C800

The "/s" option directs the compiler to replace the existing

module symbol file with a new symbol file that matches the

changed module interface.

NOTE – No space can appear in front of the "/s".

If the symbol file is missing for a module X, compiling any

module that imports X will result in the following error:

	 pos 26 import not available

The error will point to the name of module X.

If any of the symbols exported by a module X are themselves

declared using symbols imported from a module Y, then

module X depends on module Y.

In this case, if a module Z imports both X and Y, then the

IMPORT statement in Z must be "IMPORT Y, X", not

"IMPORT X, Y".

Otherwise, compiling Z will result in the following error:

	 pos 154 invalid import order

48

EXECUTING

To execute an Oberon command, move the mouse pointer over

either word of the command name, then middle-click on it:

	 	 Edit.Open

	 	 OBC.Compile

	 	 Hello.Hi

	 	 Window.Close

Anywhere a valid command name appears in the Oberon display,

that name can be used to execute the command.

If the command is not visible in the display, you can type the

command name into any text window, then execute it.

(This is most commonly done in the terminal window.)

If you execute an invalid command in Oberon, different things

may happen depending on the command. For example, if you

execute "Edit.Open" without a parameter, the command does

nothing. In other cases (such as misspelling a command), an

error message will appear:

	 	 Call error: Eddit module not found

	 	 Call error: Openn command not found

If you execute a command whose module X needs to be

recompiled because of changes made to another module Y

that X imports, an error message will appear:

	 Call error: X imports Y with bad key

Module keys are described later in this document.

49

NOTE – If you are performing the usual edit/compile/execute

cycle on a module, you must explicitly unload the module from

memory each time before you execute it:

	 System.UnloadModules Hello ~

If you forget to do this, the updated module will not execute as

you expect it to.

In the Oberon system, modules remain in memory after they

have been executed. If you execute a module that is already in

memory, the system will not load the module (even if it is a

newer version). It will only load a new module version after the

old version has been explicitly unloaded.

For details see "MEMORY".

MODULE KEYS

When a module X is compiled, the compiler generates a

module key for X. The key is a numeric value which is unique

to the set of symbols that is exported by X.

The compiler stores this key in X's object file.

When compiling a module Y which imports X, the compiler

stores X's key in Y's object file.

Finally, whenever Y is executed, the Oberon system checks that

the key for X in Y matches the key for X in X itself.

If the keys do not match, an error message will appear:

	 Call error: Y imports X with bad key

This error indicates that you need to recompile module Y.

The Oberon language is modular. It allows you to make changes

to the internals of a module X, without forcing you to recompile

all of the modules that import X.

50

However, if you make any changes to the symbols exported

by a module X, you are then required to recompile all of the

modules that import X.

The Oberon system uses module keys to enforce this language

rule.

The method the compiler uses to generate module keys ensures

that the same key value will be generated every time you

recompile a module, as long as you do not make any changes

to the module's exported symbols.

A module key value will change only after you make some

change to a module's exported symbols.

Module key values are displayed by the compiler, the symbol

file decoder utility, and the object file decoder utility.

DEBUGGING

The Oberon system provides the following support for program

debugging:

	 – Source-level runtime error messages

	 – ASSERT statements in the Oberon language

	 – User-generated debug messages in the terminal window

If the Oberon system detects a runtime error in an executing

module, it displays an error message in the terminal window.

For example:

	 TrapDemo.Hi

 	 pos 127 TRAP 1 in TrapDemo at 00039420

51

To locate this error in the module source file (TrapDemo.Mod),

you first need to open the file (if not already open), and then

enlarge its window with Window.Open.

Next, set the text cursor anywhere in the file window.

Be sure to do this before continuing.

To locate the runtime error in the module source code, select

the position value ("127") in the error message, then execute

the Edit.Locate command in the terminal window's menu bar.

This command moves the text cursor in the file window to the

position in the source code where the runtime error occurred.

NOTE – Select a position value by right-clicking twice on it.

The trap number ("1") in the error message identifies the

specific runtime error that occurred:

	 1	 Array index out of bounds

	 2 	 Type guard failed

	 3	 String too long or destination array too short

	 4	 NIL pointer reference

	 5	 NIL procedure variable call

	 6	 Integer divide by zero or negative value

	 7 	 ASSERT statement failed

A runtime error message includes the following data:

	 – Position value (127)

	 – Trap number (1)

	 – Module name (TrapDemo)

	 – Trap memory address (00039420)

Traps are software interrupts which halt the execution of a

module, and return control to the Oberon system.

52

This version of Oberon supports ASSERT statements in the

Oberon language:

	 ASSERT(index < 10);

	 ASSERT(FALSE);

ASSERT is a predeclared procedure which accepts a Boolean

expression as a parameter.

If the expression evaluates to FALSE, the currently-executing

module halts, with a runtime error showing trap number 7.

The module "Terminal" can be used to write user-generated

debug messages to the terminal window from the currently-

executing module.

For example “Edit.Open TermDemo.Mod”.

MEMORY

The Oberon system includes commands used to perform the

following memory operations:

	 – Module unloading

	 – Font unloading

	 – Garbage collection

	 – Memory usage

When you execute a command, the Oberon system checks to see

whether the command's module is already loaded in memory:

	 – If so, the system performs the command by simply calling

	 the command procedure in the already-loaded module.

	 – If not, the system first loads the module (and all the modules

 	 it imports, if they too are also not already loaded). The system

 	 then calls the command procedure in the now-loaded module.

53

Once loaded, a module remains in memory until you explicitly

unload it.

This lets you create modules which work like the Oberon system

modules, providing services to the other modules in the system.

However, two cases exist where you need to unload modules from

memory:

	 – To regain memory space in the Oberon system

	 – To replace a loaded module with a newer version

To unload one or more modules from memory, use the command

System.UnloadModules. For example:

 System.UnloadModules Hello Out ~

This command accepts a parameter list of one or more

module names (not file names).

The parameter list must end with a tilde character (‘~’).

Each of the specified modules is unloaded from memory.

When the unload command is successful, a status message

appears in the terminal window. For example:

	 unloading modules

	 Hello

	 Out

54

If you try to unload a module X which is imported by another

module that is still loaded, X does not get unloaded. Instead,

the following message appears:

	 unloading modules

	 X still in use

NOTE – This may be avoidable by reordering the command

parameters so the dependent modules get unloaded first.

The Oberon system defines a mouse command which unloads a

command's module before executing the command:

	 Middle Click	 	 Execute command

	 Shift Middle Click Execute command (after unloading module)

This mouse command is useful when you are performing the usual

edit/compile/execute cycle on a module, and need to unload

the old module version each time you execute the new version.

For details see "EXECUTING".

NOTE – The Shift Middle Click command is useful only when

developing a module which is not imported by any other

loaded module. Otherwise, you will need to use the regular

unload command to unload at once all of the modules

dependent on the one you are working on. (Include this

unload command in the project window.)

To list all the modules currently loaded in memory, use the

following command:

	 System.ModulesLoaded

This command displays the following information in the terminal

window:

	 name desc code refcnt

	 Hello	 0001D800	 0001D860 0

	 Out	 0001D2C0	 0001D390 1

55

"name" is the module name.

"desc" is the memory address of the module descriptor record

(declared in the Oberon system as type Modules.ModDesc).

"code" is the base memory address of the module code.

"refcnt" shows how many loaded modules import this one.

When the Oberon system first starts up, it loads into memory the

default system font (Oberon10.Scn.Fnt). Additional fonts are

loaded automatically, as they get used in documents.

To unload fonts from memory, use the following command:

	 System.UnloadFonts

This command unloads all fonts from the Oberon system, except

for the default system font and one additional font.

To list all the fonts currently loaded in memory, use the following

command:

	 System.FontsLoaded

The Oberon language uses garbage collection to automatically

release heap memory that is no longer being used by pointer

variables.

The garbage collector runs as a background task in the Oberon

system, and to minimize its effect on the system performance,

is run only once every twenty mouse clicks.

To make the garbage collector run immediately, use the

following command:

	 System.FreeMemory

56

To view the current status of the Oberon memory and disk

space, use the following command:

	 System.Storage

This command displays the following information in the

terminal window:

	 Memory (modules) 121152 bytes 2%

	 Memory (heap) 159488 bytes 3%

	 Disk 3612 sectors 5%

	 Tasks 1

"Memory" lists the amount and percentage of memory used for

modules and the heap.

"Disk" lists the amount (in 1024-byte sectors) and percentage

of disk storage used in the Oberon Pi disk image.

"Tasks" shows how many tasks are running in the Oberon

system.

UTILITIES

This version of Oberon includes a number of commands not

described elsewhere in this document.

These commands perform the following functions:

	 – Display current date and time

	 – Replace words in a document

	 – Display document word and line counts

	 – Exchange text data with host system

	 – Convert binary files to text data

	 – Decode symbol and object files

	 – Update system boot modules

57

Display current date and time

To display the current date and time, use the following

command:

	 System.Date

This command displays the following information in the terminal

window:

	 system clock

	 24-01-28 23:53:16

The date and time value shows (in order) the year, month, day,

hour, minutes, and seconds.

NOTE – The displayed date and time values are read-only, and

obtained from the Raspberry Pi operating system.

Replace words in a document

To replace all the occurrences of a word in a document, use

the following command:

	 Filter.Replace village => town

For details "Edit.Open Filter.Doc".

Display document word and line counts

To display the number of words or lines in a document, use

the following commands:

	 Filter.WordCount

	 Filter.LineCount

For details "Edit.Open Filter.Doc".

58

Exchange text data with host system

To exchange text data between the Oberon system and the

Raspberry Pi operating system, use the following commands:

	 Clipboard.Import	 Import text from Pi clipboard

	 Clipboard.Export	 Export text to Pi clipboard

For details "Edit.Open Clipboard.Doc".

Convert binary files to text data

To convert binary files to text data (and also convert the text

data back to binary files), use the following commands:

	 Binary.ToText	 Hello.Graph

	 Binary.FromText Hello.Graph.txt

For details "Edit.Open Binary.Doc".

Decode symbol and object files

To decode the binary data in Oberon symbol and object files

(including the compiled object code for Oberon modules), use

the following commands:

	 OBD.DecodeSymbol Hello.sym

	 OBD.DecodeObject Hello.rsc

For details "Edit.Open OBD.Doc".

Update system boot modules

To update the Oberon system boot modules (Kernel, FileDir,

Files, Modules), use the following commands:

	 OBL.Link Modules ~

	 OBL.Load Modules.bin ~

For details "Edit.Open OBL.Doc”.

59

USING OBERON

The Oberon system's unique user interface poses a learning

challenge for users accustomed to today's highly-standardized

operating systems.

This section presents information on the following topics:

	 – Learning the mouse commands

	 – Using windows

	 – Executing commands

	 – Setting the focus window

	 – Commands versus programs

	 – Developing code

	 – Backing up files

	 – Modifying the Oberon system

Some of the information in this section appears in previous

sections of this document. It is repeated here to collect

together topics related to learning Oberon.

Learning the mouse commands

Oberon Pi uses the Shift key and mouse-drag operations

to define multiple mouse commands for each mouse button

(left, right, middle). To make these commands easier to

learn, they have been assigned to the mouse buttons

according to their command category:

	 – Left		 set cursors

	 – Middle 	 execute commands

	 – Right 	 select text

The middle button commands are the hardest mouse

commands to learn in Oberon, because on most modern

operating systems (including the Raspberry Pi OS) it's the

left button that is used to execute commands.

With time and practice, you can learn to switch between

these mouse buttons as you alternate between using the

Oberon Pi and Raspberry Pi systems.

60

Using windows

The Oberon system display is based on windows, and while

the scroll controls in an Oberon window resemble those of a

standard computer window, they differ in some non-obvious

ways.

Clicking the middle mouse button in a window scroll bar

works similarly to a standard window. Middle-click where you

want to move the scroll bar's position marker to, and the

window gets updated to display the corresponding part of the

document.

But scrolling an Oberon document by smaller amounts works

differently than expected. Clicking the left mouse button

anywhere in a scroll bar always scrolls the document down.

Clicking the right mouse button always scrolls it back up.

And where in a scroll bar you left- or right-click determines

how much scrolling occurs. Clicking near the top of a scroll

bar scrolls by fewer lines of text at once, while clicking near

the bottom scrolls by more lines at once.

When a window is first created, it sometimes occupies only

the bottom part of the display. In this case use Window.Open

to make the window bigger. But to delete this window, you

will need to use Window.Close twice: once to return the

window to its original size, and a second time to actually

delete the window.

If you accidentally delete a window using Window.Close, use

the (non-menu bar) command Window.Reopen to restore the

window. This will work even with the terminal window.

Executing commands

When executing a text command, a common user error is to

middle-click on one of the command parameters, instead of on

the command name itself. This typically results in an error

message instead of an executed command.

61

Another common error is to accidentally omit the tilde symbol

("~") from the end of a command that requires this symbol.

This can lead to unexpected results. For details see

"FILE MANAGEMENT".

Setting the focus window

The focus window is the window that all of the Oberon content

commands operate on. This includes the cut, copy, and paste

commands, along with all the keyboard commands that

manipulate the data in a window.

If you try to use a command that requires a focus window, but

without first setting the focus window, then the command may

not work as expected. For details see "WINDOW SELECTION".

Commands versus programs

The Oberon system executes commands, not programs.

For example, while the following code is a valid Oberon

module, it is not executable in the Oberon system:

	 MODULE Hello;

	 IMPORT Terminal;

	 BEGIN

	 Terminal.String(" Hello, world")

	 END Hello.

But the following code is executable (as the module

command "Hello.Hi"):

	 MODULE Hello;

	 IMPORT Terminal;

	 PROCEDURE Hi*;

	 BEGIN

	 Terminal.String(" Hello, world")

	 END Hi;

	 END Hello.

62

For a procedure to work as a module command, it must be

declared without any parameters, and have an asterisk

("*") after its procedure name:

	 PROCEDURE Hi*;

Developing code

When you are developing a module in the Oberon system

(via the usual edit/compile/execute cycle), you must explicitly

unload the module from memory each time before you

re-execute it.

If you forget to do this, the updated module will not execute

as you expect it to.

In the Oberon system, modules remain in memory after they

have been executed. If you execute a module that is already in

memory, the system will not load the module (even if it is a

newer version). It will only load a new module version after the

old version has been explicitly unloaded.

Two commands exist for unloading modules:

	 – System.UnloadModules unloads the modules specified

	 as command parameters.

	 – Shift Middle Click executes a module command after

	 first unloading its module.

Note that the mouse command is useful only when developing

a module (such as Hello) that is not imported by any other

loaded module. Otherwise, you will need to use the regular

unload command to unload at once all of the modules

dependent on the one you are working on. (Include this unload

command in the project window.)

For details see "MEMORY".

63

Backing up files

Backing up files is a nonstandard process in Oberon Pi,

because Oberon Pi files are not stored individually in the

file system of the Raspberry Pi operating system.

Instead, the Oberon Pi file system is stored in a single

file named "Oberon-System.dsk", which is stored in the

Raspberry Pi OS file system (in the directory

"Home Folder/Oberon/DiskImage"). This single file serves

as a disk image file for the entire Oberon Pi system.

Thus when using Oberon Pi, three options are available

for backing up files:

	 1) Inside Oberon Pi, use the command System.CopyFiles

	 to create backup copies of an Oberon file within the

	 Oberon Pi file system.

	 2) Inside Oberon Pi, use the command Clipboard.Export

	 to transfer the contents of individual Oberon Pi text

	 files out to text files in the Raspberry Pi OS.

	 3) Outside Oberon Pi, use the Raspberry Pi OS to create

	 backup copies of the Oberon disk image file.

Because of Oberon Pi's minimal support for exporting

data, it's often easier to use the Raspberry Pi OS to back

up a single disk image file than it is to repeatedly use the

Clipboard module to transfer the text for multiple files out

of the Oberon Pi file system.

NOTE – Oberon Pi disk image files are useful only if

they contain bootable, usable versions of the Oberon Pi

system. If they are not bootable and usable, then you

will not be able to recover any Oberon files that are

stored inside the disk image file. Thus be sure to make

backup copies of a disk image file while it is still working.

Binary files can be backed up outside Oberon Pi by using the

Binary module to convert them to text files, and then using the

Clipboard module to transfer them to the Raspberry Pi OS.

64

Modifying the Oberon system

Oberon Pi includes the source code files for all parts of

the Oberon operating system. This enables you to not

only study the system internals, but also modify them.

Successfully modifying the Oberon system requires great

care, along with a solid understanding of the affected

system internals.

While the system's modular structure suggests that such

modifications may not be difficult, the various system

modules are in fact sufficiently interdependent that

seemingly minor changes to one part of the system –

for instance, character input – can result in unexpected

changes throughout the system, and in the worst case

render the system unusable.

Before each modification to the system (no matter how

small), create a backup copy of the Oberon disk image file.

Doing this will ensure that you have a working version of

the Oberon system to fall back to, in case your modification

breaks the system.

After each modification, recompile all of the affected

system modules (and in the proper order) before trying to

restart the modified Oberon system. Failure to do so will

render the system unusable, because it will no longer be

able to start up. For details see "MODULE KEYS".

NOTE – If you modify the system modules Kernel, FileDir,

Files, or Modules, then after compiling the updated modules,

you must use the Oberon boot loader utility to install the

updated module code in the system boot area of the Oberon

file system. For details "Edit.Open OBL.Doc".

65

Oberon system module dependencies:

	 – Kernel imports SYSTEM

	 – Input imports SYSTEM

	 – Display imports SYSTEM

	 – FileDir imports SYSTEM, Kernel

	 – Files imports SYSTEM, Kernel, FileDir

	 – Fonts imports SYSTEM, Files

	 – Texts imports Files, Fonts

	 – Modules imports SYSTEM, Files

	 – Viewers imports Display

	 – Oberon imports SYSTEM, Kernel, Files, Modules, Input,

	 Display, Viewers, Fonts, Texts

	 – MenuViewers imports Input, Display, Viewers, Oberon

	 – TextFrames imports Modules, Input, Display, Viewers,

	 Fonts, Texts, Oberon, MenuViewers

	 – Window imports Display, Viewers, Texts, Oberon,

	 MenuViewers, TextFrames

	 – Edit imports Files, Texts, Fonts, Display, Viewers, Oberon,

	 MenuViewers, TextFrames

	 – System imports SYSTEM, Kernel, FileDir, Files, Modules,

	 Input, Display, Viewers, Fonts, Texts, Oberon,

	 MenuViewers, TextFrames

—

	  

66

The following expression presents a simplified view of the

Oberon system module dependencies:

	 SYSTEM < Kernel < Input < Display

	 < FileDir < Files < Fonts < Texts

	 < Modules < Viewers < Oberon

 	 < MenuViewers < TextFrames

 	 < Window < Edit < System

This expression can be used to determine what system

modules to recompile (and in what order: left-to-right)

after changing the interface of a specific system module.

For example, an interface change in module Input (e.g.,

exporting the variable Input.Shift) requires recompiling

(in order) modules Oberon, MenuViewers, TextFrames,

and System.

OBERON MODULES

The Oberon system contains a large number of modules,

in the following categories:

	 – Operating system

	 – Utilities

	 – Compiler

	 – Libraries

	 – Graphics editor

	 – Animation

	 – Mathematics

	 – Instruction

67

Operating system

	 Kernel		 	 memory, disk, clock, boot

	 FileDir		 	 file directory manager

	 Files	 	 	 file manager

	 Modules	 	 module loader

	 Display	 	 symbols, graphics primitives	 	 	

	 Input	 	 	 mouse & keyboard primitives

	 Fonts	 	 	 font manager

	 Texts	 	 	 files, edit, read/write, scan

	 Viewers	 	 window manager

	 Oberon	 	 cursors, display, commands, tasks, event loop

	 MenuViewers	 window moving, menu bars

	 TextFrames	 	 display, editing, message handling

	 Window	 	 window commands

	 Edit	 	 	 text editor

	 System	 	 commands (files, display, memory, etc.)

Utilities

	 Filter	 	 	 echo, text replace, word/line count

	 Clipboard	 	 data exchange with Raspberry Pi OS

	 Binary		 	 convert binary file to text data

	 OBD	 	 	 symbol/object file decoder

	 OBL	 	 	 boot module updater

Compiler

	 OBC	 	 	 compiler

	 OBG	 	 	 code generator

	 OBS	 	 	 scanner

	 OBT	 	 	 symbol table 	

Libraries

	 Strings	 	 string operations

	 Math	 	 	 math functions

	 In	 	 	 text input from window	 	 	 	

	 Out	 	 	 text output to window

	 Terminal	 	 terminal output

	 XYplane	 	 pixel output to window

68

Graphics Editor

	 Draw	 	 	 graphics editor

	 GraphicFrames	 display, editing, message handling

	 Graphics	 	 macro & command primitives

	 Rectangles	 	 rectangle command

	 Curves	 	 line & curve commands

	 Macros	 	 macro & macro lib commands

Animation

	 Stars	 	 	 celestial simulacrum

Mathematics

	 Hilbert		 	 draw Hilbert curve

	 Sierpinski	 	 draw Sierpinski curve

	 Checkerboard	 draw square tessellation

	 Permutations		 permutations

	 MagicSquares	 magic squares

	 PrimeNumbers	 prime numbers

	 Fractions	 	 reciprocals

	 Powers	 	 powers of 2

	 Harmonic	 	 harmonic numbers

NOTE – The source code for all the non-draw math

modules is stored in the single file "OBC.Doc".

Instruction

	 Hello	 	 	 hello world

	 HelloBad	 	 syntax error example

	 TrapDemo	 	 debugging example

	 NestDemo	 	 nested procedure example

	 CaseDemo	 	 CASE statement example

	 H1/H2/H3	 	 compiling examples

	 TermDemo 		 terminal output demo

	 XYplaneDemo	 pixel output demo

	 FilesDemo	 	 file I/O demo

	 CmdDemo	 	 command execute demo

69

OBERON BOOKS

Oberon Pi includes several documents describing the

Oberon operating system and programming language:

	 – Oberon system user guide

	 – Oberon draw user guide

	 – Oberon system internals

	 – Oberon language tutorial

	 – Oberon language reference

	 – Oberon language differences

	 – Oberon compiler internals

	 – Oberon philosophy

	 – Oberon article

These documents are stored in the Raspberry Pi file system, in the

directory "Home Folder/Oberon/Documents". They can be viewed

in the Raspberry Pi operating system using the PDF Viewer in the

Accessories menu.

The Oberon system user guide and draw user guide documents

are written specifically for the Oberon Pi system, and describe

all user-level facilities of the system and the Draw application.

The remaining system and language documents were written for

the RISC workstation version of Oberon. As a result, some differences

exist between these documents and the Oberon Pi software. Such

differences are described in the sections of this document titled

"SYSTEM DIFFERENCES" and "LANGUAGE DIFFERENCES".

The Oberon compiler internals document does not describe the

Oberon release compiler. Instead it uses a smaller compiler – which

supports a subset of the Oberon language – to teach compiler design.

In doing so, the document serves as an excellent bridge to learning

the complete Oberon compiler (whose source code is included in the

Oberon Pi system).

The source code for the teaching compiler can be downloaded from

https://people.inf.ethz.ch/wirth/CompilerConstruction/index.html

70

The Oberon article is noteworthy for its description of how the

Oberon system was used in daily life at ETH Zurich, serving the

departmental computing needs for research, education, and

administration. It describes a relationship between user and

software which differs radically from the conventional divide that

exists between software developers and users.

NOTE – Each Oberon Pi PDF document displays a table of contents

in its document sidebar. If the TOC does not appear in an opened

document, select the menu command View > Docks in the Raspberry

Pi PDF Viewer, then select the "Outline" checkbox.

Here are the sources for the Oberon Pi documents:

Oberon system user guide

Document provided inside Oberon Pi system.

Oberon draw user guide

Document provided inside Oberon Pi system.

Oberon system internals
"Project Oberon". Niklaus Wirth, Jurg Gutknecht.

Posted in three parts (chapters 1-9, 10-15, 16-17) on

https://people.inf.ethz.ch/wirth/ProjectOberon/

Oberon language tutorial
"Programming in Oberon (a Tutorial)." Niklaus Wirth. Posted on

https://people.inf.ethz.ch/wirth/Oberon/index.html

Oberon language reference

"The Programming Language Oberon-07 (Revised Oberon)".

Niklaus Wirth. Posted on

https://people.inf.ethz.ch/wirth/Oberon/index.html

Oberon language differences

"Differences between Oberon-07 and Oberon".

Niklaus Wirth. Posted on

https://people.inf.ethz.ch/wirth/Oberon/index.html

71

https://people.inf.ethz.ch/wirth/Oberon/index.html

Oberon compiler internals

"Compiler Construction". Niklaus Wirth. Posted in two parts

(chapters 1-8, 9-16) on

https://people.inf.ethz.ch/wirth/CompilerConstruction/index.html

Oberon philosophy

"A Plea for Lean Software". Niklaus Wirth. Pages 64-68 in the

February 1995 issue of "Computer" (volume 28, number 2).

Oberon article

"Oberon – The Overlooked Jewel". Michael Franz. Pages 41-54

in "The School of Niklaus Wirth: The Art of Simplicity".

Laszlo Boszormenyi, Jurg Gutknecht, Gustav Pomberger (editors).

Published in 2000 by Morgan Kaufmann Publishers.

SYSTEM DIFFERENCES

The original Oberon system includes many unusual user

interface elements. These elements make the system worthy

of study, both as a historical software artifact, and as a case

study in user interface design.

But the original system also includes a few non-key features

(such as mouse interclicking and opaque command names)

which make the system difficult for beginners to use.

The primary goal and purpose of Oberon Pi is instructional:

to make the original Oberon system more accessible to

beginners, by updating the non-key user interface elements

to contemporary software standards, while preserving the

key elements that make Oberon unique.

The automotive world uses the term restomod to describe

vintage cars that have been restored in the traditional

sense, but with modern engines, brakes, and electronics.

The Oberon Pi user interface should be considered a

restomod of the original Oberon system.

72

Oberon Pi includes the following differences from the

original Oberon system:

	 – No mouse interclicking

	 – Updated terminology

	 – Text-editing commands

	 – System dates

	 – System directory

	 – System startup windows

	 – Draw application

No mouse interclicking

The most significant change in Oberon Pi is its elimination

of Oberon's use of interclicking, a feature that requires

users to press various combinations of mouse buttons at the

same time in order to perform certain mouse commands.

By contrast, mouse commands in Oberon Pi are constrained

to pressing only one mouse button at a time on the Raspberry

Pi's three-button mouse.

Oberon Pi additionally defines a second set of mouse

commands, which use the keyboard Shift key to extend the

basic Oberon Pi mouse commands. This approach not only

utilizes a freely-available user resource (i.e., the user's other

hand), but also enables the Shift-mouse commands to be

defined as natural mappings of the basic mouse commands,

following the traditional semantics of the Shift key.

The end result of this change is a set of mouse commands

which is arguably easier to learn and use than that of the

original Oberon system.

73

Updated terminology

The other significant change in Oberon Pi is its renaming

of many of Oberon's nonstandard terms for windows,

commands, and other items, with either:

	 a) standard terms used in contemporary computing, or

	 b) more consistent and descriptive names in general.

	 viewer -> window

	 key -> button (mouse)

	 caret -> cursor

	 System.Log -> Terminal

	 System.Tool -> Project

	

	 System.Close -> Window.Close

	 System.Grow -> Window.Open

	 System.Copy -> Window.Split

	 System.Clear -> Window.Clear

 	 System.Recall -> Window.Reopen

	 Edit.Store -> Edit.Save

	 Edit.Recall -> Edit.Undo

	 System.ShowModules -> System.ModulesLoaded

	 System.Free -> System.UnloadModules

	 System.ShowFonts -> System.FontsLoaded

	 System.FreeFonts -> System.UnloadFonts

	 System.ShowCommands -> System.ModuleCommands

	 System.Watch -> System.Storage

	 System.Collect -> System.FreeMemory

	 ORP.Compile -> OBC.Compile (compiler)

	 ORG -> OBG (code generater)

	 ORS -> OBS (scanner)

	 ORB -> OBT (symbol table)

	 ORTool -> OBD (file decoder)

	 ORL -> OBL (system build tools)

	 Draw.Ticks -> Draw.Grid

	 Draw.Store -> Draw.Save

74

Text-editing commands

Oberon Pi replaces Oberon's interclicked text-editing

commands with the standard text-editing commands,

and defines the standard keyboard shortcuts for those

commands:

	 Command	 	 Shortcut

	 Edit.Cut	 	 Ctrl-X

	 Edit.Copy	 	 Ctrl-C

	 Edit.Paste	 	 Ctrl-V

	 Edit.Undo	 	 Ctrl-Z	

—

As a modest productivity enhancement, Oberon Pi adds

one new selection command, and changes the behavior

of two existing commands.

	 – Shift-right-click is added as a standard command

	 for extending an existing text selection.

	 – Right-clicking twice on a word now selects words,

	 file names, command names, and procedure names.

	 – When you drag the text cursor left or right on a text

	 line, the cursor sticks to the line as you drag it.

System dates

The System.Date command obtains date values from the

Raspberry Pi operating system. In Oberon Pi these date

values are read-only.

Oberon Pi uses the same date values to timestamp files

created in the Oberon file system.

75

System directory

The System.Directory command treats a missing command

parameter as equivalent to “*".

System startup windows

When the original Oberon system first starts up, it automatically

opens any file named “System.Tool”, and displays it in a startup
window in the system track of the Oberon display.

Oberon Pi redefines and extends this feature to support the

use of multiple startup windows:

	 – A text file named "Project" (Oberon Pi's version of

	 "System.Tool") gets automatically opened in the system

	 track, below the terminal window.

	 – A text file named "Commands" gets automatically

	 opened in the system track, below any project window.

	 – A text file named "Chapters" gets automatically opened

	 in the system track, below any command window.

	 – A text file named "Guide" gets automatically opened

	 in the user track.

Draw application

In the Oberon Pi Draw application, the selection areas

for all graphic elements have been enlarged to make

them easier to select with the Raspberry Pi mouse.

76

LANGUAGE DIFFERENCES

The Oberon language has two major versions: the original version

released in 1987; and Oberon-07, released in 2007 and revised

several times after, with the last revision in 2016.

Oberon Pi conforms to the 2016 language definition, which is

provided as a language reference document in the Oberon Pi

release.

The language differences are described in the document

“Differences between Revised Oberon and Oberon”, which is

also provided as a release document.

This section presents additional language differences which are

not described in the language differences document:

	 – CASE statements

	 – Nested procedures

	 – Type LONGINT

CASE statements

The original version of the Oberon language defined the CASE

statement to include an optional ELSE statement, which handled

case index values that did not match any of the case labels.

In this original version, if a case index value did not match

any of the case labels, and no ELSE was defined, the CASE

statement aborted the program.

But in the 2016 version of the Oberon language, the CASE

statement no longer supports an optional ELSE statement,

and if a case index value does not match any of the case

labels, the CASE statement does nothing, and program flow

continues in the following statement.

In addition to this change, the CASE statement has the

following restrictions:

	 – Type case index variables cannot be structured

	 variables (s[x], s(x), s.x).

	 – Integer case labels must be in the range 0-255.

77

For example “Edit.Open CaseDemo.Mod”.

Nested procedures

The Oberon language allows a procedure to be declared inside

another procedure. This is called a nested procedure.

In the original version of the Oberon language, a nested procedure

could access constants, types, or variables that were declared in

the procedures containing the nested procedure.

But in the 2016 version of the language, a nested procedure can

access these objects only when they are declared locally in the

nested procedure, or globally in the module containing the

procedure. The so-called intermediate objects declared in the

surrounding procedures are not accessible in a nested procedure.

For example “Edit.Open NestDemo.Mod”.

Type LONGINT

The original version of the Oberon language supported the

separate data types INTEGER and LONGINT. The current

version supports only the data type INTEGER.

The Oberon Pi compiler still supports LONGINT, and treats

it as equivalent to INTEGER.

For example "Edit.Open TextFrames.Mod".

78

SYSTEM LIMITATIONS

When judged by contemporary software standards, the Oberon

system has a number of limitations.

These reflect both the state of computer hardware when Oberon

was created, and the designers' well-documented intention to

create a system tailored to their own needs, and not to those of

the marketplace.

	 – The window system supports neither auto-scrolling nor

	 the selection of content that exceeds the current window

	 view. This limitation makes the Window.Split command

	 necessary for creating large selections.

	 – The system undo commands (Edit.Undo, Window.Reopen)

	 support only minimal undo operations, with a single level

	 of undo.

	 – The text editor ("Edit") supports basic text editing, but

	 is not suitable for general document preparation. Other

	 Oberon systems have included dedicated applications for

	 word processing.

	 – The scroll wheel on the Raspberry Pi mouse is limited to

	 serving as the middle mouse button. The Oberon system

	 was not designed to support scroll wheel input.

	 – Due to limitations in the RISC emulation software, the

	 arrow keys and caps lock key are not recognized by the

	 Oberon Pi system. (The red caps lock indicator will light

	 up on the keyboard, however.)

	 – Though the Oberon system includes facilities for displaying

	 color, the RISC emulation software supports only a

	 monochrome display.

	 – The system screen fonts are bitmapped, and low-quality

	 by contemporary software standards. Note how this

	 document avoids using the available bold and italic font

	 styles. For examples see "FONTS".

	  

79

	 – The Oberon Pi system does not support the display of

	 image files (JPG, PNG, etc.). Other Oberon systems have

	 supported image file types.

	 – The Oberon system does not provide access to the internet

	 or World Wide Web. When Oberon was first created, these

	 features did not exist.

	 – This version of the Oberon Pi system lacks the ability to

	 transfer files to and from the Raspberry Pi operating system.

	 Currently it can only import and export text via the Pi

	 operating system clipboard, using the Clipboard module.

	 – By contemporary standards, the Oberon file system is

	 arguably too minimal to support large-scale computing

	 projects. Other Oberon systems have included modules

	 which provide access to networked file servers with

	 greater storage capacity.

CREDITS

The Oberon system was developed by Niklaus Wirth (NW)

and Jurg Gutknecht (JG).

The Oberon compiler was developed by Niklaus Wirth.

The Oberon RISC emulator and Clipboard module were

developed by Peter De Wachter.

The Oberon compiler changes and system building tools

were developed by Andreas Pirklbauer (AP).

The modules In, Out, and XYplane were developed by

Martin Reiser.

The Oberon Pi documents and software changes were

developed by Richard Gleaves (RG).

===

80

	Introduction
	What is Oberon?
	Why Should I Learn It?
	Oberon Pi
	This Document

	Hello, World
	Commands
	Windows
	Files
	Documents
	Projects
	Terminal

	Text
	Selection
	Editing
	Search
	Saving
	Opening

	Window Selection
	File Management
	Window Management
	Command Parameters

	Display
	Mouse
	Keyboard
	Characters
	Fonts
	Symbols

	Compiling
	Symbol Files
	Executing
	Module Keys
	Debugging
	Memory
	Utilities

	Using Oberon
	Oberon Modules
	Oberon Books
	System Differences
	Language Differences
	System Limitations
	Credits
